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1 Introduction
In our paper we include some new results in the area of BCK–algebras. This concept was intro-
duced in 1966 by Iséki [16] and brought to a shape by Iséki and Tanaka in papers such as [17].
BCK–algebras are a special case of BCI–algebras, named so because their axioms work with cer-
tain combinators used in combinatory logic. For a collection of results on BCI– / BCK–algebras
see [15, 20]; for the underlying theoretical concepts see e.g. papers by Bundler, Meyer or Hind-
ley [6, 7, 14] and book [12] written by Curry and Feys.

Definition 1. An algebra (X; ∗, 0) of type (2, 0) is called a BCI–algebra if it, for all x, y, z ∈ X ,
satisfies the following conditions:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) simultaneous validity of x ∗ y = 0 and y ∗ x = 0 implies that x = y.
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In BCI–algebras we can define, for all x, y ∈ X , a relation “≤", called a BCI–ordering, by setting

x ≤ y whenever x ∗ y = 0. (1)

It is easy to show that “≤" is a partial ordering on X .

The nature of BCI–algebras is such that the operation “∗" can often intentionally be neither associa-
tive nor commutative in the usual sense of the word. In the special case of associativeBCI–algebras,
i.e. BCI–algebras (X; ∗, 0) such that, for all x, y, z ∈ X , there is (x ∗ y) ∗ z = x ∗ (y ∗ z), we have
that x ∗ y = y ∗ x and 0 ∗ x = x for all x, y ∈ X (all these statements are in fact equivalent).

Definition 2. A BCI–algebra is called a BCK–algebra if, for all x ∈ X , there is 0 ∗ x = 0. A
BCK–algebra is called commutative if, for all x, y ∈ X there is x ∗ (x ∗ y) = y ∗ (y ∗ x). A
BCK–algebra is called a lower BCK–semilattice if (X,≤), where “≤" is a BCI–ordering, is a
lower semilattice.

Thus, lowerBCK–semilattices are a special – yet distinct and important – class of lower semilattices.
Bounded BCI/BCK–algebras are such BCI/BCK–algebras that have the greatest element, which
is usually denoted by 1. In a bounded commutative BCK–algebra the least upper bound of an
arbitrary pair of elements x, y ∈ X satisfies

x ∨ y = 1 ∗ ((1 ∗ x) ∧ (1 ∗ y)),

which means that, in this case, (X,≤) is a distributive lattice. Notice that bounded commutative
BCK–algebras are in fact MV –algebras introduced by Chang [11].

In our paper we focus on lower BCK–semilattices and their ideals. The concept of an ideal is one of
the corner stones of the theory of BCI– / BCK–algebras (see [20]).

Definition 3. A subset A of a BCK/BCI-algebra X is called an ideal of X if, for all x, y ∈ X ,
there is

0 ∈ A, (2)
x ∗ y ∈ A, y ∈ A⇒ x ∈ A. (3)

Note that – obviously – every ideal A of a BCK/BCI–algebra X satisfies, for all x, y ∈ X , the
following implication:

x ≤ y, y ∈ A ⇒ x ∈ A. (4)

The following terminology is standard for numerous algebraic concepts.

Definition 4. For any subset A of X , the ideal generated by A is defined to be the intersection of all
ideals of X containing A. We denote it 〈A〉. If A is finite, we say that 〈A〉 is a finitely generated ideal
of X .

In what follows we by I(X) and If (X) mean the set of all ideals of X and the set of all finitely
generated ideals of X , respectively. By (X,∧,≤) we mean, unless specified otherwise, a lower
BCK–semilattice.

98



2 Preliminaries
In Section 3 we make use of some results on weak closure operations on ideals of BCK–algebras or
relative annihilators in lower BCK–semilattices obtained by Jun et al. [3, 4, 5]. Notice that closure
operations or (relative) annihilators are studied for various types of combinatory logic algebras – see
e.g. Chajda and Rachůnek [10]. For some results concerning lattices within the theory of BCK–
algebras see e.g. papers by Chajda and Länger such as [8, 9].

For the proofs of results included in this section see [4, 5].

Definition 5. For any nonempty subsets A and B of (X,∧,≤), we denote

A ∧B := {a ∧ b | a ∈ A, b ∈ B}, (5)

which is called the meet set of X generated by A and B. If A = {a}, then {a} ∧ B is denoted by
a ∧B. Also, if B = {b}, then A ∧ {b} is denoted by A ∧ b.

The following example shows that the setA∧B need not always be an ideal ofX ifA,B are arbitrary
subsets of X .

Example 1. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4}with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

X has six ideals: A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2}, A3 = {0, 1, 2, 3}, A4 = {0, 2, 4} and
A5 = X . For A = {2, 3} and B = {1, 4}, we have

A ∧B = {a ∧ b | a ∈ A, b ∈ B} = {0, 1, 2},

which is not an ideal of X .

Therefore, we provide conditions for the meet set A ∧B to be an ideal.

Theorem 1. If A and B are ideals of X , then so is their meet set A ∧B.

Proposition 1. If A, B and C are ideals of X , then

(i) A ∧ 0 = 0.

(ii) A ∧B = A ∩B.

(iii) A ∧B) ∧ C = A ∧ (B ∧ C) = {a ∧ b ∧ c | a ∈ A, b ∈ B, c ∈ C}.
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Obviously,A∧B = B∧A for an arbitrary pair of nonempty subsetsA andB ofX . For any nonempty
subsets A,B and C of X , we have

A ⊆ B, A ⊆ C ⇒ A ⊆ B ∧ C. (6)

The following example shows that there exist subsets A, B and C of X such that A ⊆ B and A ⊆ C,
but B ∧ C * A.

Example 2. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4} with the following Cayley table
(different from the one in Example 1).

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

For subsets A = {0, 1}, B = {0, 1, 2, 3} and C = {0, 1, 2, 4} of X , we have

B ∧ C = {b ∧ c | b ∈ B, c ∈ C} = {0, 1, 2} * {0, 1} = A.

Definition 6. [4] For any nonempty subsets A and B of X , we define a set

(A :∧ B) := {x ∈ X | x ∧B ⊆ A} (7)

which is called the relative annihilator of B with respect to A.

Given a lower BCK-semilattice X , note that if A = {0}, then

({0} :∧ B) = {x ∈ X | x ∧B ⊆ {0}}
= {x ∈ X | x ∧ b = 0, ∀b ∈ B}
= B∗

(8)

which is the annihilator of B (see Huang [15]). Hence the concept of the relative annihilator of B
with respect to A is a generalization of the concept of the annihilator of B.

Proposition 2. [4] For any nonempty subsets A and B of X , we have

(i) If A is an ideal of X , then A ⊆ (A :∧ B).

(ii) If B1 ⊆ B2 in X , then (A :∧ B2) ⊆ (A :∧ B1).

Lemma 1. [4] If A and B are ideals of X , then the relative annihilator (A :∧ B) of B with respect
to A is an ideal of X .

For any nonempty subsets A and B of X , let us now consider the set

F := {x ∈ X | x ∧B ⊆ A ∧B} (9)

where x ∧ B and A ∧ B are meet sets. The following example shows that such a set need not be an
ideal.
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Example 3. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4} with the following Cayley table
(different from the one in Example 2).

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 1 3 0 1
4 4 4 4 4 0

We have five ideals of X: A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2}, A3 = {0, 1, 2, 3}, and A4 = X .
For subsets A = {2, 3} and B = {4} of X , we have

{x ∈ X | x ∧B ⊆ A ∧B} = {1, 2, 3},

which is not an ideal of X .

3 Some new results on ideals of lower BCK–semilattices
First of all, we provide conditions for the set F = {x ∈ X | x ∧B ⊆ A ∧B} to be an ideal.

Theorem 2. If A and B are ideals of a lower BCK-semilattice X , then the set

F = {x ∈ X | x ∧B ⊆ A ∧B}

is an ideal of X .

Proof. Since A and B are ideals of X , using Theorem 1 shows that A∧B is an ideal. So 0 ∈ A∧B.
Also, 0 ∧B = 0 ∈ A ∧B. Hence, 0 ∈ F .

Let x, y ∈ X be such that x ∗ y ∈ F and y ∈ F . Then (x ∗ y)∧B ⊆ A∧B and y ∧B ⊆ A∧B, that
is,

(x ∗ y) ∧ b ∈ A ∧B (10)

and
y ∧ b ∈ A ∧B (11)

for all b ∈ B. Since b ∈ B, we have 〈b〉 ⊆ B. It follows that y ∧ 〈b〉 ⊆ y ∧ B and (x ∗ y) ∧ 〈b〉 ⊆
(x ∗ y) ∧B. Thus, y ∧ 〈b〉 ⊆ A ∧B and (x ∗ y) ∧ 〈b〉 ⊆ A ∧B. It means that,

y ∈ (A ∧B :∧ 〈b〉) (12)

and
x ∗ y ∈ (A ∧B :∧ 〈b〉) (13)

Using Lemma 1, we conclude that (A ∧B :∧ 〈b〉) is an ideal of X . So (12), (13) and (3) show that

x ∈ (A ∧B :∧ 〈b〉)

Hence, or all b ∈ B, x ∧ b ∈ x ∧ 〈b〉 ⊆ A ∧B. Therefore,

x ∧B ⊆ A ∧B,

which means that x ∈ F .
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In the following text we are going to investigate properties of such ideals. The name, which we choose
for them, stresses the fact that the set A is reduced to a one element set.

Definition 7. For two ideals A and B of X , the ideal

{x ∈ X | x ∧B ⊆ A ∧B}

is called A-reduced meet ideal based on B and denoted by A∧B
B

.

The following example shows that the converse of Theorem 2 is not true in general, which means that
there exist subsets A and B of X which are not ideals, but A∧B

B
is an ideal of X .

Example 4. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4} with the following Cayley table
(different from the ones in Example 2 or Example 3).

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 2 4 0

We have four ideals of X: A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2, 4} and A3 = X . For subsets
A = {0, 1} and B = {1, 2} of X which are not ideals, we have

A ∧B
B

= {0, 1, 3},

which is the ideal A1 of X .

Proposition 3. For any ideals A and B of X , we have

(i) A ⊆ A∧B
B

and B ⊆ A∧A∧B
B

A∧B
B

.

(ii) A∧X
X

= A and A∧A
A

= X .

(iii) A∧B
B

= X ⇔ B ⊆ A.

Proof. (i) Suppose an arbitrary x ∈ A. Then x ∧ B ⊆ A ∧ B for all B ∈ I(X). Thus x ∈ A∧B
B

, and
so A ⊆ A∧B

B
.

Let x ∈ B be an arbitrary element. For any arbitrary element y ∈ A∧B
B

, we have y ∧ B ⊆ A ∧ B.
Since x ∈ B, it follows that y ∧ x ∈ A ∧B. Thus,

x ∧ A ∧B
B

⊆ A ∧B.

Besides,

A ∧B ⊆ A = A ∧ A ∧B
B

.
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Therefore, x ∧ A∧B
B
⊆ A ∧ A∧B

B
, implying that

x ∈
A ∧ A∧B

B
A∧B
B

.

(ii) Let x ∈ A. Then x∧X ⊆ A∧X , and so x ∈ A∧X
X

. Conversely, let x ∈ A∧X
X

. Then x∧X ⊆ A∧X .
Since A ∧X = A and x ∧ x = x, we have x ∈ A. Therefore,

A ∧X
X

= A.

Clearly,
A ∧ A
A

= {x ∈ X | x ∧ A ⊆ A ∧ A} = X.

(iii) Suppose that A∧B
B

= X . Let b be an arbitrary element of B. Since B ⊆ X , clearly we have
b ∧B ⊆ A ∧B, and so

b = b ∧ b ∈ A ∧B.

Thus B ⊆ A ∧ B. Also, we always have A ∧ B ⊆ B. Therefore, A ∧ B = B which means that
B ⊆ A.

Conversely, suppose that B ⊆ A. Let x ∈ X and b ∈ B be an arbitrary element. Then x ∧ b ≤ b,
and thus by using (4), x ∧ b ∈ B ⊆ A, i.e. x ∧ b ∈ A ∧ B and x ∈ A∧B

B
. Thus X ⊆ A∧B

B
, and so

X = A∧B
B

.

The following example shows that the converse of Proposition 3 (i), is not true in general, meaning
that there exist ideals A and B of X such that A∧B

B
* A and A∧A∧B

B
A∧B
B

* B.

Example 5. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4} with the following Cayley table
(again different from all the above examples).

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

We have six ideals of X: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 3}, A4 = {0, 1, 2, 3}
and A5 = X . For ideals A = A2 = {0, 1, 2} and B = A1 = {0, 1} of X we have

A ∧B
B

= A5,

and clearly,
A ∧B
B

* A.
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Also,

A ∧ A ∧B
B

= A ∧ A5 = A.

Thus,

{x ∈ X | x ∧ A ∧B
B

⊆ A ∧ A ∧B
B
} = {x ∈ X | x ∧ A5 ⊆ A} = {0, 1, 2},

and hence,
A ∧ A∧B

B
A∧B
B

* B.

Proposition 4. For any ideals A and B of X such that A ⊆ B, we have

A ∧B
B

∩B = A.

Proof. Let x ∈ A. Then clearly x ∈ B and x ∧B ⊆ A ∧B. Thus

x ∈ A ∧B
B

∩B.

Now suppose that x ∈ A∧B
B
∩ B. Then x ∈ B and x ∈ A∧B

B
. So x ∧ B ⊆ A ∧ B. Since A ⊆ B and

x ∈ B, we have A ∧B = A and
x = x ∧ x ∈ A ∧B = A.

Therefore, x ∈ A and
A ∧B
B

∩B = A.

Proposition 5. Let B be an ideal of X . For any family {Aλ | λ ∈ Λ} of ideals, we have( ∩
λ∈Λ

Aλ ∧B

B

)
=
⋂
λ∈Λ

(
Aλ ∧B
B

)
. (14)

Proof. Let x ∈
(
∩
λ∈Λ

Aλ∧B

B

)
. Then x ∧ B ⊆ ∩

λ∈Λ
Aλ ∧ B. So for an arbitrary element y ∈ B,

x ∧ y ∈ ∩
λ∈Λ

Aλ ∧ B. Hence there exist a ∈ ∩
λ∈Λ

Aλ and b ∈ B such that x ∧ y = a ∧ b. Thus, for

every λ ∈ Λ, a ∧ b ∈ Aλ ∧ B and so x ∧ y ∈ Aλ ∧ B. Since y is an arbitrary element of B, we have
x ∧B ⊆ Aλ ∧B. Hence, for every λ ∈ Λ,

x ∈
(
Aλ ∧B
B

)
which means that

x ∈
⋂
λ∈Λ

(
Aλ ∧B
B

)
.

Therefore, ( ∩
λ∈Λ

Aλ ∧B

B

)
⊆
⋂
λ∈Λ

(
Aλ ∧B
B

)
.
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Now suppose that x ∈ ∩
λ∈Λ

(
Aλ∧B
B

)
. Then for every λ ∈ Λ, x ∈ Aλ∧B

B
and so x ∧ B ⊆ Aλ ∧ B. For

an arbitrary element y ∈ B and every λ ∈ Λ, x ∧ y ∈ Aλ ∧ B. So for λ1 ∈ Λ, there exist aλ1 ∈ Aλ1

and b1 ∈ B such that x ∧ y = aλ1 ∧ b1. Similarly, for λi ∈ Λ (2 ≤ i ≤ n), there exist aλi ∈ Aλi and
bi ∈ B such that x ∧ y = aλi ∧ bi. Now we have

x ∧ y =(x ∧ y) ∧ (x ∧ y) ∧ . . . ∧ (x ∧ y)

= (aλ1 ∧ b1) ∧ (aλ2 ∧ b2) ∧ . . . ∧ (aλn ∧ bn)

= (aλ1 ∧ aλ2 ∧ . . . ∧ aλn) ∧ (b1 ∧ b2 . . . ∧ bn)

Clearly, aλ1 ∧ aλ2 ∧ . . . ∧ aλn ∈
∧
λ∈Λ

Aλ and b1 ∧ b2 . . . ∧ bn ∈ B. Using Proposition 1, we conclude

that
aλ1 ∧ aλ2 ∧ . . . ∧ aλn ∈ ∩

λ∈Λ
Aλ.

Thus, x ∧ y ∈ ∩
λ∈Λ

Aλ ∧B. Since y is an arbitrary element of X , we have

x ∈

( ∩
λ∈Λ

Aλ ∧B

B

)
.

Therefore, ( ∩
λ∈Λ

Aλ ∧B

B

)
= ∩

λ∈Λ

(
Aλ ∧B
B

)
.

Theorem 3. For any ideals A and B of X , we have

A ∧B ⊆ A ∧B
B

⊆ (A :∧ B). (15)

Moreover, if A ⊆ B, then
A ∧B
B

= (A :∧ B). (16)

Proof. Let x ∈ A∧B be an arbitrary element. Then there exist a ∈ A and b ∈ B such that x = a∧ b.
For an arbitrary element b′ ∈ B we have

x ∧ b′ = (a ∧ b) ∧ b′ = a ∧ (b ∧ b′).

Since b ∧ b′ ≤ b and b ∈ B, using (4) we conclude that b ∧ b′ ∈ B. Thus, a ∧ (b ∧ b′) ∈ A ∧ B.
Therefore, A ∧B ⊆ A∧B

B
.

Now let x ∈ A∧B
B

. Then for every element b ∈ B, x ∧ b ∈ A ∧ B. Since A ∧ B ≤ A, we have
x ∧ b ∈ A. Hence x ∧B ⊆ A and x ∈ (A :∧ B). Therefore, A∧B

B
⊆ (A :∧ B).

If A ⊆ B, then A ∧B = A and equation (16) is clear.

Theorem 4. For ideals A, B1 and B2 of X , if B1 ⊆ B2, then

A ∧ (A :∧ B1)

(A :∧ B1)
⊆ A ∧ (A :∧ B2)

(A :∧ B2)
. (17)
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Proof. Suppose that B1 ⊆ B2 and x ∈ A∧(A:∧B1)
(A:∧B1)

. Then

x ∧ (A :∧ B1) ⊆ A ∧ (A :∧ B1).

Using Proposition 2, we have

A ∧ (A :∧ B1) = A = A ∧ (A :∧ B2),
(A :∧ B2) ⊆ (A :∧ B1).

Thereby,

x ∧ (A :∧ B2) ⊆ x ∧ (A :∧ B1) ⊆ A ∧ (A :∧ B1) = A = A ∧ (A :∧ B2).

Therefore, x ∧ (A :∧ B2) ⊆ A ∧ (A :∧ B2) and thus

x ∈ A ∧ (A :∧ B2)

(A :∧ B2)
.

The following example shows that the converse of inclusion (17) is not true in general, which means
that there exist ideals A, B1 and B2 of X such that B1 ⊆ B2, but

A ∧ (A :∧ B2)

(A :∧ B2)
*
A ∧ (A :∧ B1)

(A :∧ B1)

Example 6. Consider the lowerBCK-semilatticeX = {0, 1, 2, 3, 4}with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For ideals A = {0, 1}, B1 = {0, 3} and B2 = {0, 2, 3} of X , we have

(A :∧ B1) = {x ∈ X | x ∧B1 ⊆ A} = {0, 1, 2, 4},

and
(A :∧ B2) = {x ∈ X | x ∧B2 ⊆ A} = {0, 1, 4}.

Thus,
A ∧ (A :∧ B1)

(A :∧ B1)
= {x ∈ X | x ∧ (A :∧ B1) ⊆ A ∧ (A :∧ B1)} = {0, 1},

and
A ∧ (A :∧ B2)

(A :∧ B2)
= {x ∈ X | x ∧ (A :∧ B2) ⊆ A ∧ (A :∧ B2)} = {0, 1, 2, 3}.
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Clearly,
A ∧ (A :∧ B1)

(A :∧ B1)
⊆ A ∧ (A :∧ B2)

(A :∧ B2)
.

But
A ∧ (A :∧ B2)

(A :∧ B2)
*
A ∧ (A :∧ B1)

(A :∧ B1)
.

Proposition 6. For ideals A, B1 and B2 of X , we have

A ∧ (A :∧ B1)

(A :∧ B1)
∩ A ∧ (A :∧ B2)

(A :∧ B2)
⊆ A ∧ (A :∧ 〈B1 ∪B2〉)

(A :∧ 〈B1 ∪B2〉)
. (18)

Proof. Since B1 ⊆ 〈B1 ∪B2〉, using Theorem 4, we conclude that

A ∧ (A :∧ B1)

(A :∧ B1)
⊆ A ∧ (A :∧ 〈B1 ∪B2〉)

(A :∧ 〈B1 ∪B2〉)
.

Similarly, we have
A ∧ (A :∧ B2)

(A :∧ B2)
⊆ A ∧ (A :∧ 〈B1 ∪B2〉)

(A :∧ 〈B1 ∪B2〉)
.

Therefore,
A ∧ (A :∧ B1)

(A :∧ B1)
∩ A ∧ (A :∧ B2)

(A :∧ B2)
⊆ A ∧ (A :∧ 〈B1 ∪B2〉)

(A :∧ 〈B1 ∪B2〉)
.

4 Future work
The roots of BCI–, BCK–, MV – and other types of algebras lie in combinatory logic and informa-
tion sciences. Notice that recently Jun and Song [18] and Flaut [13] linked BCK–algebras to block
codes used in channel encoding in earlier mobile communication systems. Matrices of block codes
are studied in Saeid et al. [21]. Since, in a special case, we obtain lattices (or semilattices), when-
ever multivalued aspects are employed we can make use of results of the hyperstructure theory and
concepts such as e.g. EL–hyperstructures (see e.g. Křehlík and Novák [19] where sets of matrices
and lattices are studied) or even classical results of Varlet [22] who provided the link between dis-
tributive lattices and hyperstructure theory. In our future work we shall concentrate on finding links
between our results and the above mentioned concepts, or those connected with closure operations on
BCK–algebras [1, 2].
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