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Abstract. In this note we consider the demand function D = D(p), where p is price of a certain 
good and we introduce some natural assumptions on D in terms of the corresponding elasticity 
coefficient. We derive some properties of D which follow from the normal assumptions, and we 
provide economic interpretation and application. We also present some classes of of functions 
which satisfy the normal assumptions.
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1 Introduction
Economist often study how demand for a certain commodity reacts to a change of price. It can
be measured by how many units the quantity demanded will change per unit of money increase in
price. However, there is unsatisfactory aspect to this way of measuring the sensitivity of demand
to price changes because one unit of money increase in the price may be considerable for some
commodities (bread or milk, for instance) whereas it can be insignificant for other commodities (such
as cars). This difficulty can be eliminated if relative changes are used instead. It can be asked by
what percentage the quantity demanded changes when the price increases by 1 percent. The number
obtained in this way is independent of the units in which both quantity and price are measured. This
number is called the price elasticity of demand, measured at a given price. Assume now that the
demand for a commodity can be described by the function x = D(p), where p denotes the price. The
change of price from p to p + ∆p, yields the change of quantity of demand, the absolute change of
x being ∆x = D(p + ∆p) − D(p). Hence, the relative (or proportional) change of x is given by
∆x
x

= D(p+∆p)−D(p)
D(p)

. The ratio of two aforementioned relative changes equals to

∆x
x
∆p
p

=
p

D(p)

D(p+∆p)−D(p)

∆p
.

If ∆p = p
100

, the parameter p increases by 1 percent, and we get

∆x
x
∆p
p

=
∆x

x
· 100 ,

whereby the right-hand side in the equation above represents the change of quantity of demand mea-
sured in terms of percentages of x. This quantity is called the average elasticity of x in the interval
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[p, p+∆p], and it depends both on the price change ∆p and on the price p, but is unit free. Therefore
it makes no difference whether the quantity of demand is measured in tons, kilograms or whatever
units, or if the price is measured in dollars, euros, or any other currency. To define the actual elasticity
of D(p) with respect to p (denotes by EpD(p)) in a manner that it does not depend on the amount of
increase in p, we consider the limit as ∆p −→ 0, getting

EpD(p) :=
p

D(p)
·D′(p)

Since the increase of the price p for normal goods results in decrease in the demand D(p), we expect
EpD(p) to be negative for any admissible p.

The price elasticity of demand varies enormously from one commodity to another. The more sub-
stitutes there are for a commodity and the closer they are, the greater will be the price elasticity of
demand (ignoring the negative sign). The reason is that consumers will be able to switch to the sub-
stitutes when the price of the commodity increases. For example, the price elasticity of demand for a
particular brand of a product will probably be fairly high, especially if there are many other similar
brands. By contrast the demand for a product in general should be less sensitive to a change in price.
As well, the higher the proportion of consumers’ income is spent on a certain commodity, the more
they will have to reduce their consumption of it following a rice in price i.e. the more elastic will
be the demand. Economists are interested in knowing the sensitivity of demand not just to a change
in price but also to changes in other variables such as consumers’ incomes (income elasticity of de-
mand) or expenditure on a particular advertising campaign or other forms of promotion. Furthermore,
they consider elasticities of supply, elasticities of revenue, cost elasticity and several other kinds of
elasticity. It is therefore logical and certainly helpful to define elasticity for a general differentiable
function f = f(x).

• If |Exf(x)| > 1, then f is elastic at x,

• If |Exf(x)| = 1, then f is unit elastic at x,

• If |Exf(x)| < 1, then f is inelastic at x,

• If |Exf(x)| = 0, then f is perfectly inelastic at x,

• If |Exf(x)| = +∞, then f is perfectly elastic at x.

If the demand is price elastic, quantity demanded changes proportionately more than price, therefore
a rise in price will lead to a reduction in consumers’ expenditure on the commodity and hence to a
reduction in the total producers’ revenue. When the demand is price inelastic, price changes propor-
tionately more than quantity demanded, so a rise in price will lead to an increase in total expenditure
and revenue. If the price elasticity of demand is unity then the quantity demanded changes by the
same proportion as the price. There are some rules for elasticities of sums, products, quotients and
composite functions might be useful. It can easily be shown that if f = f(x) and g = g(x) are
positive valued differentiable functions of x and A is a constant, then the following rules hold:

• ExA = 0,

• Ex(fg) = Ex(f) + Ex(g),
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• Ex(
f
g
) = Ex(f)− Ex(g),

• Ex(f + g) = f
f+g

Exf + g
f+g

Exg,

• Ex(f − g) = f
f−g

Exf − g
f−g

Exg,

• Ex(f ◦ g) = Euf(u) · Exu, where u = g(x).

Also, we note that, if y = f(x) admits an inverse function x = f−1(y), then it holds that Eyf
−1 =

1
Exf

. We also use the notation Eg,x instead of Exf , which is sometimes more convenient. Then we
can re-state some of the following results as follows:

Proposition 1.1. If x = x(p) (i.e., p = p(x)), it holds that:

(i) Epx,p = 1 + Ex,p,

(ii) Epx,x = 1 + Ep,x,

(iii) Ep,xEx,p = 1.

2 Examples
Further, we provide six typical examples of demand functions (cf. [2]).

x =a− bpc, a, b, c > 0 (1)
x =a+ bp−c, a, b, c > 0 (2)

x =
b

p+ a
, a, b > 0 (3)

x =
√
a− bp, a, b > 0 (4)

x =ae−bp, a, b > 0 (5)

x =pae−b(p+c), a, b, c > 0 (6)

The function defined by (1) is usually considered as a demand function for c = 1 (linear function),
c = 2(quadratic function) and c = 1

2
(square root). All of the functions (1)-(6) satisfy the standard

assumptions on the demand functions, but, on top of that, also share the common feature (with the
exception of (2)): for all admissible values of the price p determined by D(x) = {p ≥ 0 : x(p) ≥
0, x′(p) ≤ 0} it holds that the elasticity coefficient Ex,p is a decreasing function of the price p, i.e., as
the price p increases, the demand function monotonically makes then transition from the interval of
non-elasticity to the interval of elasticity, or, for short, dEx,p

dp
≤ 0.

3 Demand Function and Revenue Function
Since the affine function is instructive and simple example, we describe the connection between in
the case of the demand function (1). In such a case, we have

x = a− bp or p =
a− x

b
for a, b > 0 .

The demand function is well-defined for p ∈ [0, a
b
]. The elasticity coefficient is

Ex,p = −bp
x
.
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The inelasticity interval is p ∈ [0, a
2b
⟩, whereas the elasticity interval is p ∈ ⟨ a

2b
, a
b
]. Provided

p =
a

2b
, x =

a

2
, it results Ex,p = −1 .

We have
dEx,p

dp
= −ab

x2
≤ 0 .

Then the function of (total) revenue reads R(p) = px = ap− bp2, and it attains the maximal value

R∗ =
a2

4b
for p =

a

2b
, x =

a

2
, Ex,p = −1 .

On the other hand, we can express the total revenue in terms of quantity of demand, getting

R(x) =
ax− x2

b
;

whereby the marginal revenue is

MR = R′ =
dR

dx
=
a− 2x

b
.

If the marginal revenue equals zero, i.e., R′ = 0, the total revenue admits stationary point x∗ = a
2

and p(x∗) = a
2b

. We have R′ > 0 (R′ < 0, resp.), i.e., the total revenue increases (decreases, resp.)
for 0 ≤ x ≤ a

2
(a
2
≤ x ≤ a., resp.). Thus, the maximum of the total revenue is attained at x = x∗.

In terms of elasticity this means that demand is elastic for 0 ≤ x ≤ a
2

and inelastic for a
2
≤ x ≤ a.

Hence,
dEx,p

dx
=

a

x2
≥ 0 .

This provides as additional assumption on the demand function. That is to say, normal assumptions on
the demand function follow from natural assumptions on the total revenue function R = R(x) = px.
Indeed, we have:

dR

dx
=
R

x
(1 + Ep,x). (7)

We distinguish three cases:

(i) If Ep,x ∈ ⟨−1, 0⟩ then (7) we get dR
dx

≥ 0. The interval where total revenue increases with
respect to demand x coincides with the interval of elasticity of the demand function since it
holds that Ex,pEp,x = 1. We conclude:

Ep,x ∈ ⟨−1, 0⟩ ⇒ Ex,p < −1 .

(ii) If Ep,x = −1, then (by (7)) dR
dx

= 0 for x = x∗ and the total revenue admits stationary point.

(iii) If Ep,x < −1 then dR
dx

≤ 0. The interval where total revenue decreases with respect to demand
x coincides with the interval of inelasticity of the demand function, i.e., Ex,pEp,x = 1 yields

Ep,x < −1 ⇒ Ex,p > −1 .
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We recall that natural assumption on the total revenue function provides that for a small quantity
of demand x the total revenue increases, which means that the demand grows faster then the price
declines to some eventual stationary pointx∗, where the total revenue attained its maximum. After
the point x∗, total revenue decreases. In terms of elasticity this means that the demand function
which depends on the price p is decreasing. The consideration above allows us to formulate normal
assumptions on the demand function:

Normal Assumptions on Demand Function:

p ≥0 , (8)
x ≥0 , (9)
x′ ≤0 , (10)

dEx,p

dp
≤0 . (11)

4 Elasticity of Demand Function

Definition 4.1 The elasticity coefficient of the second order of x = x(p) is denoted by E(2)
x,p and it

is the elasticity coefficient of the function E = Ex,p, i.e.,

E(2)
x,p := EE,p =

p

E

dE

dp
. (12)

Definition 4.2 The elasticity coefficient of order k + 1, k ∈ N is defined by E(k) = E
(k)
x,p , i.e.,

E(k+1)
x,p := EE(k),p =

p

E(k)

dE(k)

dp
. (13)

Now we can rewrite condition (11), dEx,p

dp
≤ 0, coupled with the condition Ex,p ≤ 0 in terms of the

elasticity coefficient of the second order, getting

E(2)
x,p ≥ 0. (14)

Further, we can rewrite the properties of typical demand functions in terms of higher-order elasticity
coefficients.

1. The demand function (1)
x = a− bpc, a, b, c > 0

is defined for p ∈ [0, (a
b
)
1
c ]. Then it holds that:

E =Ex,p = −bcpcx−1 ≤ 0 ,

E(2) =EE,p = c− E ,

E(3) =Ec−E,p = −E ,

E(4) =E−E,p = c− E .

Notice that we have c > 0,−E ≥ 0 ⇒ E(2) = EE,p = c − E ≥ 0, and so normal assumptions are
fulfilled. If

p∗ = (
a

b(c+ 1)
)
1
c

26



we get Ex,p = −1, which is the price for which demand monotonically changes from inelasticity
interval to the elasticity interval. On the other hand, total revenue increases from p = 0 do p = p∗,
and at p = p∗ attains its maximal value, whereby for p > p∗ we have decrease of total revenue.

2. The demand function (3)

x =
b

p+ a
, a, b > 0

is defined for p ≥ 0.

E =Ex,p = −b−1px ≤ 0 ,

E(2) =EE,p = 1 + E ,

E(3) =E1+E,p = E ,

E(4) =EE,p = 1 + E .

This function is inelastic for any non-negative price p, i.e., 0 ≥ Ex,p > −1, so that E(2) = EE,p =
1 + E > 0.

3. The demand function (4)
x =

√
a− bp, a, b > 0,

is defined for p ∈ [0, a
b
].

E =Ex,p = −0.5bpx−2 ≤ 0 ,

E(2) =EE,p = 1− 2E ,

E(3) =E1−2E,p = −2E ,

E(4) =EE,p = 1− 2E .

Since −E ≥ 0 ⇒ E(2) = EE,p = 1− 2E ≥ 0, the normal assumptions are satisfied. For

p∗ =
2a

3b

we get Ex,p = −1, and so p∗ is the price for which demand monotonically changes from inelasticity
interval to the elasticity interval. On the other hand, total revenue increases from p = 0 do p = p∗,
and at p = p∗ attains its maximal value, whereby for p > p∗ we have decrease of total revenue.

4. The demand function (5)
x = ae−bp, a, b > 0,

is defined for p ≥ 0. Computation gives

E =Ex,p = −bp ≤ 0 ,

E(2) =EE,p = 1 > 0 ,

E(3) =E1,p = 0 .

Provided
p∗ =

1

b
,
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we get Ex,p = −1 and so p∗ is the price for which demand monotonically changes from inelasticity
interval to the elasticity interval. On the other hand, total revenue increases from p = 0 do p = p∗,
and at p = p∗ attains its maximal value, whereby for p > p∗ we have decrease of total revenue.

5. The demand function (6)
x = pae−b(p+c), a, b, c > 0

is defined for p ≥ 0.
The elasticity coefficient is

E = Ex,p = a− bp

and so
E = Ex,p = a− bp ≤ 0 ⇒ p ≥ a

b
.

Thus for p ∈ [a
b
,∞⟩ we obtain

E(2) =EE,p = −bp
E

= 1− a

E
> 0 ,

E(3) =E− bp
E
,p =

a

E
,

E(4) =E a
E
,p = −EE,p = −E(2) .

For
p∗ =

a+ 1

b

we get Ex,p = −1, and so p∗ is the price for which demand monotonically changes from inelasticity
interval to the elasticity interval. On the other hand, total revenue increases from p = a

b
to p = p∗,

and at p = p∗ attains its maximal value, whereby for p > p∗ we have decrease of total revenue.

Finally, we formulate natural requirements for the demand function with respect to its elasticity.

Normal assumptions on demand function in terms of elasticity

p ≥0 ,

x ≥0 ,

Ex,p ≤0 ,

E(2)
x,p ≥0 .

Theorem 4.1 If x = x(p), p, x ≥ 0, x′ ≤ 0, x(0) > 0 and

E(2)
x,p = α + βE, α > 0, β ̸= 0

then the function x = x(p) satisfies normal assumptions on the demand function.
Proof . Starting from E

(2)
x,p = α+ βE, according to (12) we get

E ′

E(α + βE)
=

1

p
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or, equivalently,
dE

E(α + βE)
=

1

p
dp.

The solution E of this ordinary differential equations is

E

α + βE
= cpα

which can be written in its explicit form as

E =
αcpα

1− cβpα
. (15)

Next, we have
x′

x
=

αcpα−1

1− cβpα

whereby
x = b(1− cβpα)−1/β . (16)

To begin with, since x(0) > 0, we get b > 0. Then it follows that x ≥ 0, b > 0 ⇒ 1− cβpα.
Case 1.
If it holds that cβ < 0, then 1− cβpα > 0 for every p ≥ 0.
From (15) and x′ ≤ 0 we deduce c < 0, and also from (15) we recover

E ′ =
α2cpα−1

(1− cβpα)2
. (17)

But then from c < 0 it results E ′ ≤ 0.
Case 2.
If it holds that cβ > 0, α > 0 and 1− cβpα ≥ 0 provide 0 ≤ p ≤ (cβ)−

1
α , x(0) = b > 0.

Hence, E ≤ 0 ⇒ c < 0. Now from cβ > 0 and c < 0 we have β < 0. Therefore, for α > 0, β < 0
we haveE(2)

x,p = α + βE ≥ 0.
Q.E.D.

Conclusion
One example of the class of demand functions which satisfy normal assumptions is:

x = b(1− cβpα)−1/β ,

where
b > 0, c < 0, α > 0, β ̸= 0.

5 General setting
In a broader context, our goal is to examine and describe the structure of elementary functions of
one variable according to the properties of their generalized elasticity coefficients. For a given open
interval D ⊂ (0,+∞) we introduce the class of functions XD, defined by

XD := {g : D −→ (0,+∞) : g(n)(x) > 0, n ∈ N ∪ {0} , x ∈ D} .

For f, g ∈ XD we set f ≈ g iff there exists λ ∈ R\{0} such that g = λf , [g] := {f ∈ XD : f ≈ g},
XD := XD/≈. Then E : XD −→ XD, E[g](x) := Eg,x is well-defined injection.

Definition 5.1. We say that function g is
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(i) φn-type recursive function if there exists n0 ∈ N such that for every n ∈ N, n ≥ n0, it holds
that E(n+1)

g = φn(E
(n)
g ); if for some φ it holds that φn = φ for every n ≥ n0, we say that g

(where g = g(φ)) is φ-type recursive function,

(ii) is n0-static, if φn-type recursive function g satisfies φn(ξ) = ξ for every n ≥ n0.

Example 5.1. If we set n0 := 2 and

φn(ξ) :=

{
−ξ, if n ≥ 3 is odd
c− ξ, if n is even,(

ψn(ξ) :=

{
ξ, if n ≥ 3 is odd
1 + ξ, if n is even, resp.

)
then g(x) := a − bxc (g(x) := b(x − a)−1, resp.) is φn-type (ψn-type, resp.) recursive function.
Similarly, if we set

φ̃n(ξ) :=

{
−2ξ, if n ≥ 3 is odd
1− 2ξ, if n is even,(

ψ̃n(ξ) :=

{ a
ξ
, if n ≥ 3 is odd

1− a
ξ
, if n is even, resp.

)
then g(x) := (a − bx)1/2 (g(x) := xae−b(x+c), resp.) is φ̃n-type (ψ̃n-type, resp.) recursive function.
We note that, if g is fixed point of operator E(1) (i.e., if g(x) = − 1

ln(Cx)
, C > 0), then g is n0-static

for every n0 ∈ N. On the other hand, we do not know if there exists a function g which is φ-type
recursive for any n0 ∈ N provided φ ̸= id, where id(ξ) := ξ is identity function.

Definition 5.2. We say that function a set of functions A is E(n)-stable for given n ∈ N if it holds
that E(n)(A) ⊂ A.

It is easy to see that the set of all rational (irrational, resp.) functions isE(1)-stable and thereforeE(n)-
stable for every n ∈ N. We conjecture that there is no nontrivial set of functions which is E(n)-stable
for some n ∈ N, n > 1, and which is not E(1)-stable.

We note that homogeneity properties of the elasticity coefficients are inherited from homogeneity
properties of the function itself.

Theorem 5.1. x 7→ g(x) is k-homogeneous function for some k ∈ R iff x 7→ Eg,x is 0-homogeneous
function.

We have not been able to provide direct economic interpretation of higher order elasticity coefficient
of general function g. Instead, we introduce some particular classes of functions for which such
interpretation is possible. For instance, this is the case for functions g which are φn-type recursive
with weak dependence of φn with respect to n (cf. Example 5.1).

References

[1] Allen, R. G. D.: Mathematical Analysis for Economists, MacMillan and co. Limited, London,
1938.
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