
CONTROL SMOOTHING SPLINES WITH INITIAL CONDITIONS

ASMUSS Svetlana (LV), BUDKINA Natalja (LV)

Abstract. This work is devoted to the problem of optimal control of a linear dynamic system 
with initial conditions. The main attention is paid to a controlled system reduced to the 
second order differential equation considered with the cost functional which controls the input 
function of this system to push a trajectory nearby a set of desired points. We show how the 
technique of smoothing splines can be adapted for construction of solutions of such problem.
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1 Introduction
This work is devoted to the problem of determining control and state trajectories for a linear dynamic
system over a period of time to minimize an objective function. To solve this problem in some special
cases we use the results from the theory of splines. The obtained solutions are so called control
theoretic smoothing splines whose characteristics depend on the dynamics of the control system.

Spline functions are well known and widely used for practical approximation of functions by the in-
formation of values of function at the given points. The smoothing spline is a smooth function s in a
suitable function space that minimizes the objective functional with a weight parameter which con-
trols the smoothing. We refer the reader to [4] and references therein for the properties of smoothing
splines. From the control theory point of view, the smoothing spline model is closely related to the
finite-horizon linear quadratic optimal control problem by treating derivatives of s as a control input.
There are a lot of publications about relations between control theory and smoothing splines, which
in this context called smoothing theoretic splines. It should be mentioned also, that in the most of the
papers (see, e.g., [2],[3],[5]) about control splines the problems on splines are reduced to the problem
of control theory. The aim of this paper is otherwise to reduce the problem of control theory to the
problem of smoothing splines and to use for its analysis methods and results of the general theory of
splines. It will be done for some special cases of the following control theory problem:

x′ =Mx+ βu, y = γ>x, (1)

considered with additional initial condition x(a) = α.
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We consider system (1) as the curve z = y(t) generator. Our aim is to find a control law u ∈ L2[a, b]
which drives the scalar output trajectory close to a finite sequence of set points at fixed times

{(ti, zi) : i = 1, 2, . . . , n}, where a < t1 < t2 < . . . < tn < b.

and minimizes the objective functional with a positive weight ρ:

b∫
a

u2(t)dt+ ρ
n∑
i=1

(y(ti)− zi)2 → min.

The main attention in this paper is paid to the special case of problem (1):

M =
(

0 1
−q −p

)
, β =

(
0
1

)
, x =

(
x1
x2

)
, α =

(
α1

α2

)
.

For this case the objective functional of the problem of optimal control could be rewritten as

b∫
a

(x′′1(t) + px′1(t) + qx1(t))
2dt+ ρ

n∑
i=1

(γ1x1(ti) + γ2x
′
1(ti)− zi)2 −→ min

x1(a)=α1,x′1(a)=α2

. (2)

We also note that usually such problem has been considered without initial conditions.

2 Smoothing splines
Problem (2) corresponds to the following more general conditional minimization problem:

||Tg||2 + ρ||Ag − z||2 −→ min
Bg=α

, (3)

where linear operators T : W r
2 [a, b] → L2[a, b], A : W r

2 [a, b] → IRn and B : W r
2 [a, b] → IRm

are continuous, parameter ρ > 0 and vectors z ∈ IRn and α ∈ IRm are given. We assume that
A(W r

2 [a, b]) = IRn, B(W r
2 [a, b]) = IRm and all functionals of A and B, i.e. Ai, Bj , i = 1, . . . , n,

j = 1, . . . ,m, are linearly independent and we recall the theorem (see, e.g., [1]) on the existence and
characterization of solutions of problem (3).

Theorem 1 Under the assumptions that kerT + kerA is closed a solution of problem (3) exists.
An element s ∈ B−1(α) is a solution of this problem if and only if there exist vectors λ ∈ IRn and
ν ∈ IRm such that

T ∗Ts = A∗λ+B∗ν and λ+ ρ(As− z) = 0. (4)

Under the additional assumption kerT ∩ kerB = {0} this theorem gives the uniqueness of solution.

The characterization theorem implies that a solution of problem (3) is a spline from the space

S(T, (A,B)) = {s ∈ W r
2 [a, b] : < Ts, Tg >= 0 for all g ∈ ker(A,B)},

where (A,B) consists of all functionals of A and B. Here and in the sequel <,> is the scalar product
and kerA is the kernel of operator A.
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Let us denote by P : W r
2 [a, b]→ kerT a projector to the kernel of T . By using P we rewrite the first

equation of (4) as

< Ts, Tg >=
n∑
i=1

λiAi(g − Pg) +
m∑
j=1

νjBj(g − Pg). (5)

For applying (5) in this paper we consider g − Pg written in an integral form which includes Tg:

g(t) = (Pg)(t) +

b∫
a

(Tg)(τ)K(t, τ)dτ. (6)

Now we rewrite (5) in the form

b∫
a

(Tg)(τ)(Ts)(τ)dτ =
b∫
a

(Tg)(τ)(
n∑
i=1

λiAi(K(., τ)) +
m∑
j=1

νjBj(K(., τ)))dτ

(here A(K(., τ)) means that K(·, τ) is considered as the function of the first argument when the
second argument is fixed as τ ) which implies

(Ts)(τ) =
n∑
i=1

λiAi(K(., τ)) +
m∑
j=1

νjBj(K(., τ)) and

s(t) = (Ps)(t) +
n∑
i=1

λi
b∫
a

Ai(K(., τ))K(t, τ)dτ +
m∑
j=1

νj
b∫
a

Bj(K(., τ))K(t, τ)dτ.

Let us assume that dim(kerT ) = m, kerT ∩ kerB = {0} and g − Pg ∈ kerB for all g. Then the
unique solution of problem (3) is

s(t) = (Ps)(t) +
n∑
i=1

λi

b∫
a

Ai(K(., τ))K(t, τ)dτ (7)

such that

Ais+
λi
ρ

= zi, i = 1, . . . , n, and BjPs = αj, j = 1, . . . ,m. (8)

Let us note that vector ν ∈ IRm (see Theorem 1) is such that

n∑
i=1

λiAih+
m∑
j=1

νjBjh = 0 for all h ∈ kerT. (9)
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3 Smoothing splines in control theory
We consider problem (2) as problem (3) with

Tg = g′′ + pg′ + qx1 = u, Aig = γ1g(ti) + γ2g
′(ti), i = 1, ..., n, B1g = g(a), B2g = g′(a).

In this case operators T, A and B fulfill all assumptions mentioned in the previous section. In the
sequel we obtain the view of solution of problem (2) and on this basis we describe special classes of
control splines from S(T, (A,B)) depending on the roots r1, r2 of the equation r2 + pr + q = 0.

• Class 1 (exponential splines with polynomial coefficients): r1 = r2 ∈ IR \ {0}.

• Class 2 (exponential splines): r1, r2 ∈ IR, r1 6= r2.

• Class 3 (polynomial-exponential splines): r1, r2 ∈ IR, r1 6= r2, r1 6= 0, r2 = 0.

• Class 4 (polynomial splines): r1 = r2 = 0.

• Class 5 (trigonometric splines with polynomial coefficients): r1,2 = ±iη 6= 0.

• Class 6 (trigonometric splines with exponential-polynomial coefficients): r1,2 = ζ ± iη.

The remaining part of this section is organized as follows: the subsections correspond to the classes
mentioned above; we present a proof of the obtained result for the first class (Subsection 3.1) and give
results for other classes (Subsections 3.2-3.6) without proofs due to the space limitation.

3.1 Exponential splines with polynomial coefficients

We consider the case r1 = r2 ∈ IR \ {0}, i.e., q > 0, p2 = 4q and Tg = g′′− 2r1g
′+ r21g. The kernel

of operator T is kerT = {(C1 + C2t)e
r1t | C1, C2 ∈ IR}. We use (6) with

(Pg)(t) = g(a)er1(t−a) + (g′(a)− r1g(a))er1(t−a)(t− a), K(t, τ) = er1(t−τ)(t− τ)+

and obtain the following representation

s(t) = (µ1 + µ2(t− a))er1(t−a) +
n∑
i=1

λi
b∫
a

er1(ti+t−2τ)((γ1 + γ2r1)(ti− τ)+ + γ2(ti− τ)0+)(t− τ)+dτ

for solution s of problem (2) by using (7). Applying (8) we obtain

µ1 = B1Ps = α1, µ2 = B2Ps− r1B1Ps = α2 − r1α1, (10)

s(ti) +
λi
ρ

= zi, i = 1, . . . , n. (11)

The expression of Ts gives the corresponding control function u :

u(t) = (Ts)(t) =
n∑
i=1

λie
r1(ti−t)((γ1 + γ2r1)(ti − t)+ + γ2(ti − t)0+). (12)
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By using the equalities (ti − τ)k+ = (ti − τ)k + (−1)k+1(τ − ti)+ and

(γ1 + γ2r1)
n∑
i=1

λie
r1ti + (ν1 + ν2r1)e

r1a = 0,

(ν1a+ ν2r1a+ ν2)e
r1a +

n∑
i=1

λi((γ1 + γ2r1)tie
r1ti + γ2e

r1ti) = 0, (13)

(two last equalities are written using (9) with h(t) = er1t and h(t) = ter1t ) we rewrite s:

s(t) = (µ1 + µ2(t− a))er1(t−a) +
t∫

a

er1(a+t−2τ)((ν1 + ν2r1)(τ − a)− ν2))(t− τ)dτ+

+
n∑
i=1

λi

t∫
a

er1(ti+t−2τ)((γ1 + γ2r1)(τ − ti)+ − γ2(τ − ti)0+)(t− τ)dτ.

The integration gives us the result:

s(t) = (µ1 + µ2(t− a))er1(t−a) +
ν1
4r31

(r1(t− a)(er1(a−t) + er1(t−a)) + (er1(a−t) − er1(t−a)))+

+
ν2(t− a)

4r1
(er1(a−t) − er1(t−a)) +

n∑
i=1

λi(
γ1
4r31

(r1(t− ti)+(er1(ti−t) + er1(t−ti))+

+ (er1(ti−t) − er1(t−ti))(t− ti)0+) +
γ2
4r1

(er1(ti−t) − er1(t−ti))(t− ti)+). (14)

The following proposition is proved.

Proposition 1 In the case r1 = r2 ∈ IR \ {0} the unique solution of problem (2) is exponential
spline (14) which polynomial coefficients fulfill conditions (10), (11), (13). The corresponding control
function u is given by (12).

3.2 Exponential splines

In the case r1, r2 ∈ IR, r1 6= r2, r1 6= 0, r2 6= 0 we use Tg = g′′ − (r1 + r2)g
′ + r1r2g. The kernel of

this operator is kerT = {C1e
r1t + C2e

r2t | C1, C2 ∈ IR}.

By analogy with the previous case we obtain the solution s of problem (2) in the following form:

s(t) =
α2 − α1r2
r1 − r2

er1(t−a) − α2 − α1r1
r1 − r2

er2(t−a) +
1

2(r21 − r22)
(
(ν1 − ν2r1)er1(t−a)

r1
− (ν1 − ν2r2)er2(t−a)

r2
+

+
n∑
i=1

λi(
γ1
r1
er1|t−ti| + γ2(e

r1(ti−t)+ − er1(t−ti)+)− γ1
r2
er2|t−ti| − γ2(er2(ti−t)+ − er2(t−ti)+))), (15)

where coefficients ν1 and ν2 are expressed using the following system:

(γ1 + γ2r1)
n∑
i=1

λie
r1ti + (ν1 + ν2r1)e

r1a = 0, (γ1 + γ2r2)
n∑
i=1

λie
r2ti + (ν1 + ν2r2)e

r2a = 0. (16)
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Proposition 2 In the case r1, r2 ∈ IR, r1 6= r2, r1 6= 0, r2 6= 0 the unique solution of problem (2)
is exponential spline (15) which coefficients fulfill conditions (11), (16). The corresponding control
function u is given by

u(t) =
n∑
i=1

λi(ti − t)0+
r1 − r2

(γ1(
r1(ti−t)−er2(ti−t)) + γ2(r1e

r1(ti−t) − r2er2(ti−t))). (17)

3.3 Polynomial-exponential splines

Now we consider the case when one of the roots r1, r2 ∈ IR is equal to zero. The following result can
be obtained by minimal changes of the previous proof.

Proposition 3 In the case r1, r2 ∈ IR, r1 6= r2, r1 6= 0, r2 = 0 the unique solution of problem (2) is
polynomial-exponential spline

s(t) = α2

r1
er1(t−a) + α1 − α2

r1
+ 1

r31
((ν1 − ν2r1)er1(t−a) − (ν1 + ν2r1)e

r1(a−t) + 2r1ν2 − 2r1ν1(t− a)+

+
n∑
i=1

λi(t− ti)0+(−γ1r1(t− ti)−
γ1+γ2r1

2
er1(ti−t) + γ1−γ2r1

2
er1(t−ti) + γ2r1))

which coefficients fulfill (11) and the following system

(γ1 + γ2r1)
n∑
i=1

λie
r1ti + (ν1 + ν2r1)e

r1a = 0,
n∑
i=1

λiγ1 + ν1 = 0,

The corresponding control function u is given by (17).

3.4 Cubic splines

In the case r1 = r2 = 0, i.e., p = q = 0, we use Tg = g′′. This case corresponds to the classical
smoothing problem in the theory of splines according to which a solution of (2) without additional
conditions is a cubic spline. Taking into account the initial conditions and Theorem 1 we get the
solution s of problem (2) and the corresponding control function u:

s(t) = α1 + α2(t− a) + ν1
6
(t− a)3+ − ν2

2
(t− a)2+ +

n∑
i=1

λi
6
(t− ti)3+, u(t) = s′′(t),

with the coefficients which fulfill the conditions (11) and ν1+
n∑
i=1

λi = 0, ν1t0+ ν2+
n∑
i=1

λiti = 0.

3.5 Trigonometric splines with polynomial coefficients

Now we consider the case when r1,2 = ±iη 6= 0, i.e., p = 0, q > 0, η =
√
q. It means that we take

Tg = g′′ + qg. The kernel of this operator is kerT = {C1cos ηt+ C2sin ηt | C1, C2 ∈ IR}.

Proposition 4 In the case r1,2 = ±η 6= 0 the unique solution of problem (2) is trigonometric spline

s(t) = α1cos (η(t− a)) +
α2

η
sin (η(t− a)) + ν1

2η3
(η(t− a)cos (η(t− a))− sin (η(t− a)))+
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+ ν2
2η
(t−a)sin (η(t−a))+ 1

2

n∑
i=1

λi(
γ1
η3
sin (η(t− ti)+)− (t−ti)+

η2
(γ1cos (η(t− ti))+γ2ηsin (η(t− ti)))

which polynomial coefficients fulfill (11) and
n∑
i=1

λi(γ1sin (ηti) + γ2ηcos (ηti)) + ν1sin (ηa) + ν2ηcos (ηa) = 0,

n∑
i=1

λi(γ1cos (ηti)− γ2ηsin (ηti)) + ν1cos (ηa)− ν2ηsin (ηa) = 0.

The corresponding control function u is given by

u(t) =
n∑
i=1

λi(
γ1
η
sin η(ti − t)+ + γ2(ti − t)0+cos η(ti − t)).

3.6 Trigonometric splines with exponential-polynomial coefficients

In this section we consider the case r1,2 = ζ ± iη, i.e., p2 − 4q < 0, ζ 6= 0, η 6= 0. We use operator
Tg = g′′ − 2ζg′ + (ζ2 + η2)g with the kernel kerT = {C1e

ζtcos ηt+ C2e
ζtsin ηt | C1, C2 ∈ IR}.

Proposition 5 In the case r1,2 = ζ ± iη, ζ 6= 0, η 6= 0 the unique solution of problem (2) is trigono-
metric spline

s(t) = α1e
ζ(t−a)cos (η(t−a))+α2 − ζα1

η
eζ(t−a)sin (η(t−a))+

n∑
i=1

λi(τ − ti)0+
4ζη

((eζ(ti−t)−eζ(t−ti))×

×( γ1η

ζ2 + η2
cos η(t− ti) + γ2sin η(t− ti)) + (eζ(ti−t) + eζ(t−ti))sin η(t− ti)

γ1ζ

ζ2 + η2
+

1

4η
((eζ(a−t)−

−eζ(t−a))( ν1η

ζ2 + η2
cos η(t− a) + ν2sin η(t− a)) + (eζ(a−t) + eζ(t−a))sin η(t− a) ζν1

ζ2 + η2
).

which exponential-polynomial coefficients fulfill (11) and
n∑
i=1

λie
ζti((γ1 + γ2ζ)sin ηti + γ2ηcos ηti) + eζa((ν1 + ν2ζ)sin ηa+ ν2ηcos ηa) = 0,

n∑
i=1

λie
ζti((γ1 + γ2ζ)cos ηti − γ2ηsin ηti) + eζa((ν1 + ν2ζ)cos ηa− ν2ηsin ηa) = 0.

The corresponding control function u is given by

u(t) =
n∑
i=1

λi(ti − t)0+
η

eζ(ti−t)((γ1 + γ2ζ)sin η(ti − t) + γ2ηcos η(ti − t)).

4 Numerical example
We consider the problem (2) with γ1 = 1, γ2 = 0, α1 = 1, α2 = 1, p = −3, q = 2, i.e.,
r1 = 1, r2 = 2, and desired points: (0.1; 1), (0.3; 7), (0.4; 2), (0.6; 11), (0.7; 9).We solve this problem
on [0 : 0.7] with three different values of ρ: ρ1 = 1000, ρ2 = 7000 and ρ3 = 30000.

In this case the unique solution of (2) is the exponential spline (15) with coefficients from Tab.1. We
note that s(ti)− zi = λi/ρ, i = 1, ..., n.

The graphs of s for ρ1 (dash dot line), ρ2 (dash long line) and ρ2 (solid line) are shown in Figure 1
(a), the graphs of the corresponding control function u are given in Figure 1 (b).
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λ1/ρ λ2/ρ λ3/ρ λ4/ρ λ5/ρ ν1 ν2
ρ1 −0.859 2.696 −3.203 2.244 −1.063 155.34 −16.64
ρ2 −0.772 1.926 −2.215 1.359 −0.602 2064.43 −7.35
ρ3 −0.408 0.911 −1.006 0.578 −0.251 5181.63 12.86

(a) (b)

Fig. 1. Graphs of solution.
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